Progress In Incremental Machine Learning
نویسنده
چکیده
We will describe recent developments in a system for machine learning that we’ve been working on for some time (Sol 86, Sol 89). It is meant to be a “Scientist’s Assistant” of great power and versatility in many areas of science and mathematics. It differs from other ambitious work in this area in that we are not so much interested in knowledge itself, as we are in how it is acquired how machines may learn. To start off, the system will learn to solve two very general kinds of problems. Most, but perhaps not all problems in science and engineering are of these two kinds. The first kind is Function Inversion. These are the P and NP problems of computational complexity theory. They include theorem proving, solution of equations, symbolic integration, etc. The second kind of problem is Time Limited Optimization. Inductive inference of all kinds, surface reconstruction, and image restoration are a few examples of this kind of problem. Designing an automobile in 6 months satisfying certain specifications and having minimal cost, is
منابع مشابه
Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملA New Incremental Support Vector Machine Algorithm
Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vecto...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملIncremental Learning in Biological and Machine Learning Systems
Incremental learning concepts are reviewed in machine learning and neurobiology. They are identified in evolution, neurodevelopment and learning. A timeline of qualitative axon, neuron and synapse development summarizes the review on neurodevelopment. A discussion of experimental results on data incremental learning with recurrent artificial neural networks reveals that incremental learning oft...
متن کاملLearning in Time Ordered Domains with Hidden Changes in Context
Concept drift due to hidden changes in context complicates learning in many real world domains including financial prediction, medical diagnosis, and communication network performance. Machine learning systems addressing this problem generally use an incremental learning, on-line paradigm. An off-line, meta-learning approach to the identification of hidden context is presented. This approach us...
متن کاملResearch on Incremental Learning Method Based on Support Vector Machine Method
An incremental learning algorithm based on support vector machine was proposed to process large-scale data or data generated in batches. Initial goal concept learnt by standard support vector machine algorithm was updated by an updating model. Compared with the existing incremental learning algorithms, this algorithm can achieve the incremental inverse process and the training time is in invers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003